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ABSTRACT
Bivariate count models having one marginal and the other conditionals being of
the Poissons form are called pseudo-Poisson distributions. Such models have simple,
flexible dependence structures, possess fast computation algorithms, and generate
a sufficiently large number of parametric families. It has been strongly argued that
the pseudo-Poisson model will be the first choice to consider in modeling bivariate
over-dispersed data with positive correlation and having one of the marginal equi-
dispersed. Yet, before we start fitting, it is necessary to test whether the given
data is compatible with the assumed pseudo-Poisson model. Hence, we derive and
propose a few Goodness-of-Fit tests for the bivariate pseudo-Poisson distribution in
the present note. Also, we emphasize two tests, a lesser-known test based on the
Supremes of the absolute difference between the estimated probability generating
function and its empirical counterpart. A new test has been proposed based on the
difference between the estimated bivariate Fisher dispersion index and its empirical
indices. However, we also consider the potential of applying the bivariate tests that
depend on the generating function (like the Kocherlakota and Kocherlakota(K&K)
and Muñoz and Gamero (M&G) tests) and the univariate Goodness-of-Fit tests (like
the Chi-square test) to the pseudo-Poisson data. However, we analyze finite, large,
and asymptotic properties for each of the tests considered. Nevertheless, we compare
the power (bivariate classical Poisson and Conway-Maxwell bivariate Poisson as
alternatives) of each of the tests suggested and also include examples of application
to real-life data. In a nutshell, we are developing an R package that includes a test
for the compatibility of the data with the bivariate pseudo-Poisson model.

KEYWORDS
Goodness-of-Fit test; Bivariate pseudo-Poisson; Marginal and Conditional
distributions; Neyman Type A distribution; Thomas distribution

1. Introduction

Indeed, Goodness-of-Fit (GoF) test is a statistical procedure to test whether the given
data is compatible with the assumed distribution. Any GoF test requires the following
three Steps: (1) Identifying the unique characteristic of the assumed model (Exam-
ples: Distribution function, generating function, or density function); (2) Compute
the empirical version of the assumed characteristic; (3) With the pre-assumed mea-
sure(Examples: L1 - or L2-space), measure the distance between assumed item in Step
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(1) and its empirical one, in Step (2). A rejection region can be computed with a given
level, and the cut-off value for the distance measure is determined. However, if the re-
jection region can not be derived explicitly, one can use the Bootstrapping technique
to generate a critical region. The general steps required to simulate a rejection region
using Bootstrapping are discussed more in Section 4. We refer to Meintanis [16] and
Nikitin [18] for a detailed discussion of the GoF tests, which involve the aforemen-
tioned steps. Besides, there do exist or can be constructed tests which are not based
on a unique characteristic of the assumed distribution. For example, considering the
univariate Poisson distribution, a GoF test exists that depends on the Fisher index of
depression. We also know that the Poisson distribution belongs to the class of equi-
dispersed models, but this property does not characterize the Poisson distribution.
Hence, such tests, which are not based on a unique characteristics of the assumed
distributions are not consistent tests.

The literature on GoF tests for bivariate count data is sparse. For the classical
bivariate and multivariate Poisson distributions, a GoF test using the probability
generating function is discussed by Muñoz and Gamero [20] and Muñoz and Gamero
[21]. For a recent review of the available bivariate GoF tests and a new test using the
differentiation of the probability generating function, see Muñoz [19].

In the following sections, we are starting with a test defined in Kocherlakota and
Kocherlakota [12] and a few bivariate GoF tests reviewed in Muñoz [19]. In addition
to the classical GoF tests using probability generating function (p.g.f.), we considered
a less known test, which will be the Supremum of the absolute difference between
estimated p.g.f. and empirical ones. In addition, we are introducing a non-consistent
tests which are based on the moments, in particular, defining test taking difference
of estimated bivariate Fisher index and its empirical counterpart. We examine each
test’s finite, large, and asymptotic properties and recommend a few tests based on
their power and robustness analysis.

Before discussing GoF tests, we would like to make a few remarks on the bivariate
pseudo-Poisson model and its relevance in the literature. Finally, we refer to Arnold
and Manjunath [2] and Arnold et al.[3] for classical inferential aspects, characteriza-
tion, Bayesian analysis, and also an example of applications of the bivariate pseudo-
Poisson model.

2. Bivariate pseudo-Poisson models

In the following we will be discussing the bivariate pseudo-Poisson model, see Arnold
and Manjunath [2] page 2307.

Definition 2.1. A 2-dimensional random variable (X,Y ) is said to have a bivariate
pseudo-Poisson distribution if there exists a positive constant λ1 such that X ∼ P(λ1)
and a function λ2 : {0, 1, 2, ...} → (0,∞) such that, for every non-negative integer x,
Y |X = x ∼ P(λ2(x)).

Here we restrict the form of the function λ2(x) to be a polynomial with unknown
coefficients. In particularly the simple form we assume is that λ2(x) = λ2 + λ3x, then
the above bivariate distribution will be of the form

X ∼ P(λ1), (1)
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and

Y |X = x ∼ P(λ2 + λ3x). (2)

The parameter space for this model is {(λ1, λ2, λ3) : λ1 > 0, λ2 > 0, λ3 ≥ 0}. The
case in which the variables are independent corresponds to the choice λ3 = 0. The
probability generating function (p.g.f.) for this bivariate pseudo-Poisson distribution
is given by

G(t1, t2) = eλ2(t2−1)eλ1[t1eλ3(t2−1)−1]; t1, t2 ∈ R. (3)

Remark 1. As noted in Arnold and Manjunath [2], for the case λ2 = 0, the bivari-
ate pseudo-Poisson distribution reduces to the bivariate Poisson-Poisson distribution.
The corresponding Poisson-Poisson distribution was initially introduced by Leiter and
Hamdani [14] in modeling traffic accidents, and fatalities count data. The bivariate
pseudo-Poisson model is a generalization of the Poisson-Poisson distribution.

The joint p.g.f. in equation (3) deduces to

GII(t1, t2) = eλ1[t1eλ3(t2−1)−1]; t1, t2 ∈ R. (4)

Now, the marginal p.g.f. of Y is

G(1, t2) = GY (t2) = eλ2(t2−1)eλ1[eλ3(t2−1)−1]; t2 ∈ R. (5)

Note that, in general, the p.g.f. in equation (4) can not be simplified to compute all
marginal probabilities. Yet, we can use equation (4) to derive a few marginal probabili-
ties of Y . The derivation of marginal probability of Y is demonstrated for Y = 0, 1, 2, 3
in Appendix A, and one can still extend the mentioned procedure to get albeit com-
plicated values for the probability that Y assumes any positive value. Besides, the
derivation of the other conditional distribution of the bivariate pseudo-Poisson, i.e.,
f(x|y), has been included in Appendices B.

In the following sections, we discuss a few one-dimensional distributions that are
derived from the bivariate pseudo-Poisson for the case λ2 = 0. Moreover, the derived
univariate distributions have classical relevance to the two parameters, Neyman Type
A and Thomas distribution.

2.1. Neyman Type A distribution

As noted in Arnold and Manjunath [2], in the case in which λ2 = 0 the marginal
distribution is a Neyman Type A distribution with λ3 being the index of clumping
(see page 403 of Johnson, Kemp, and Kotz [10]). It can also be recognized as a Poisson
mixture of Poisson distributions. Now, the marginal mass function of Y is given by

P (Y = y) =
e−λ1λy

3

y!

∞∑
j=0

(λ1e
−λ3)jjy

j!
; y = 0, 1, 2, .... (6)

i.e., Y has a Poisson distribution with the parameter λ1 while λ1 is also a Poisson
distribution with the parameter λ3. We refer to Glesson and Douglas [7] and Johnson,
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Kemp and Kotz [10] Section 9.6 for applications and inferential aspects of the Neyman
Type A distribution.

2.2. Thomas distribution

Consider the joint probability generating function defined in equation (4), i.e.,

GII(t1, t2) = eλ1[t1eλ3(t2−1)−1]; t1, t2 ∈ R. (7)

Take t1 = t2 := t and the above p.g.f. deduces to

G∗(t) = G(t, t) = eλ1[teλ3(t−1)−1]; t ∈ R. (8)

Note that the above univariate p.g.f. is the p.g.f. of the Thomas distribution with
parameter λ1 and λ3. The probability mass function of the Thomas distribution is
given as

P (Z = z) =
e−λ1

z!

z∑
j=1

(
z

j

)
(λ1e

−λ3)j(jλ3)
z−j , z = 0, 1, 2, .... (9)

For further, applications and inferential aspects of the Thomas distribution, we refer
to Glesson and Douglas [7] and Johnson, Kemp and Kotz [10]) in Section 9.10.

Remark 2. The Neyman Type A and the Thomas distribution have historical rel-
evance in modeling plant and animal populations. For example, suppose that the
number of clusters of eggs an insect lays and the number of eggs per cluster have spec-
ified probability distributions. Then, for the Neyman Type A distribution and Thomas
distributions, the number of clusters of eggs laid by the insect follows a Poisson dis-
tribution with parameter λ1. For the Neyman Type A, the number of eggs per cluster
is also a Poisson distribution with parameter λ3. But for the Thomas distribution,
the parent of the cluster is always to be present with the number of eggs(offspring)
and which has a shifted Poisson distribution with support {1, 2, 3, ...} and the param-
eter λ3. Note that Neyman Type A and Thomas distributions can be generated by a
mixture of distributions and also a random sum of random variables.

Consider that the mixing distribution is a Poisson with parameter λ1 with the
mixture has a Poisson with parameter λ3, then the resultant random variable has a
Neyman Type A distribution. In the sequel, if the mixing distribution is a Poisson with
parameter λ1 and the jth distribution in the mixture has a distribution of the form
j + Y (j), where Y (j) has a Poisson with parameter jλ3 then the resultant random
variable has a Thomas distribution.

However, for a random sum of random variables (also known as Stopped-Sum distri-
butions), let us consider that the size N of the initial generation is a random variable
and that each individual i of this generation independently gives a random variable
Yi, where Y1, Y2, ... has a common distribution. Then the total number of individuals
is SN = Y1+ ...+YN . For the case that N is a Poisson random variable with parameter
λ1 and Yi is a Poisson random variable with parameter λ3 then the random sum SN
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has a Neyman Type A distribution. However, if Yi is a shifted Poisson with parameter
λ3 and support {1, 2, 3, ...}, then the random sum SN has a Thomas distribution.

Remark 3. The other conditional mass function, i.e., the conditional mass function of
X given Y = y, is recognized in Section 5 of Leiter and Hamdan [14] and in Appendix
3 of Arnold and Manjunath [2]. However, in Appendix B in the current note, we
have derived the conditional mass function and identified the expression as a Stirling
number of the second kind.

3. Goodness-of-Fit tests

In the following section, we discuss GoF tests, which are based on the moments (non-
consistent tests), on unique characteristics (consistent tests), and a simple classical χ2

Goodness-of-Fit test.

3.1. New test based on moments

In the following, we will be extending an univariate GoF test based on the Fisher index
to the bivariate case. We know that for a multivariate distribution, the Fisher index
of dispersion is not uniquely defined. However, in the following, we use the definition
of the multivariate Fisher dispersion given by Kokonendji and Puig [13] in Section
3 as for any d-dimensional discrete random variable Z with mean vector E(Z) and
covariance matrix Cov(Z) the generalized dispersion index is

GDI(Z) =

√
E(Z)

T
Cov(Z)

√
E(Z)

E(Z)TE(Z)
. (10)

For the bivariate pseudo-Poisson model, definite the random vector Z = (X,Y)T

for and the moments are (c.f. Arnold and Manjunath [2] page 2309-2310)

E(Z) = (λ1, λ2 + λ3λ1)
T , (11)

cov(Z) =

[
λ1 λ1λ3

λ1λ3 λ2 + λ3λ1 + λ2
3λ1

]
.

Now, using the definition given in Kokonendji and Puig [13] page 183, dispression
index for the bivariate pseudo-Poisson is

GDI(Z) =
λ2
1 + 2λ

3

2

1 λ3

√
λ2 + λ3λ1 + (λ2 + λ3λ1)(λ2 + λ3λ1 + λ2

3λ1)

λ2
1 + (λ2 + λ3λ1)2

= 1 +
2λ

3

2

1 λ3

√
λ2 + λ3λ1 + (λ2 + λ3λ1)λ

2
3λ1

λ2
1 + (λ2 + λ3λ1)2

> 1, (12)

which indicates over-dispersion.
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For the corresponding sample version, consider the n sample observations
Z1 = (X1, Y1)

T ,..., Zn = (Xn, Yn)
T from the bivariate pseudo-Poisson distribution.

Now, denote Zn = 1
n

∑n
i=1 Zi = (X,Y )T and ĉov(Z) = 1

n−1

∑n
i=1 ZiZ

T
i − ZnZ

T
n are

sample mean vector and sample covariance matrix, respectively. Then the empirical
bivariate dispersion index is

ĜDI(Z)n =

√
Z
T
n ĉov(Z)

√
Zn

Z
T
nZn

. (13)

According to Theorem 1 in Kokonendji and Puig [13] page 184, as n → ∞,
√
n{ĜDI(Z)n −GDI(Z)} ∼ N(0, σ2

g), where σ2
g = ∆TΓ∆;

Γ =

[
Σ 0
0 0,

]
and

Σ =

[
var(X) cov(X,Y )

cov(X,Y ) var(Y )

]
.

A new bivariate GoF test for the count data based on the Fisher dispersion index
is

FI(.)n =
√
n{ĜDI(Z)n −GDI(Z)}, (14)

and the null hypothesis is rejected for large absolute values of F
(.)
n . The asymptotic

distribution of the test statistic is

ĜDI(Z)n −GDI(Z)
σg√
n

∼asy. N(0, 1), as n → ∞. (15)

For the detailed proof, c.f. Theorem 1 in Kokonendji and Puig [13] page 184. However,
for the two sub-models of the bivariate pseudo-Poisson model, i.e., when λ2 = λ3 is
sub-model I and when λ2 = 0 is sub-model II the new test statistics are

FI(SI)n =
√
n{ĜDI(Z)n −GDI(SI)(Z)}, (16)

and

FI(SI)n =
√
n{ĜDI(Z)n −GDI(SII)(Z)}, (17)
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where

GDI(SI)(Z) = 1 +
2λ

3

2

1 λ
3

2

3

√
1 + λ1 + (1 + λ1)λ

3
3λ1

λ2
1 + λ2

3(1 + λ1)2
, (18)

where

GDI(SI)(Z) = 1 +
2λ

3

2

1 λ
3

2

3

√
λ1 + λ3

3λ
2
1

λ2
1 + λ2

3λ
2
1

. (19)

One can derive test statistic FI
(SI)
n and FI

(SII)
n . The estimated dispersion index can

be obtained by plugging in the m.l.e estimates of λi, i = 1, 2, 3. Also, due to the
invariance and asymptotic properties of the m.l.e. estimates, the proposed test statis-
tics are normally distributed (with appropriate scaling). For large sample sizes, the
null hypothesis is rejected whenever the test statistic absolute value exceeds the stan-
dard normal quantile value. In Section 4, we analyze the finite, large, and asymptotic
behavior of the proposed test statistic.

In addition, using bootstrapping techniques, one can simulate the distribution of
the above test, and then testing for normality will also produce a robust GoF fit test.

3.2. Test based on the unique characteristic

In the following we consider a few test statistics for the full, sub-model I and sub-model
II.

3.2.1. Muñoz and Gamero (M&G) method

The GoF tests for a bivariate random variable based on the finite sample size are
limited. This is due to difficulty in deriving closed form expression for the critical
region under finite sample size. Yet, in the following, we use the finite sample size test
suggested in Muñoz and Gamero [20] for the classical bivariate Poisson distribution
is used to construct the GoF test for the bivariate pseudo-Poisson distribution. For a
finite sample test based on the p.g.f. to test GoF for the univariate Poisson, we refer to
Rueda et al. [22]. Furthermore, using the bootstrapping technique, the critical region
for the test is simulated and illustrated with an example in Section 4.

Let (X,Y ) be a bivariate random variable with p.g.f. G(t1, t2;λ1, λ2, λ3), (t1, t2)
T ∈

[0, 1]2. For the given data set (Xi, Yi), i = 1, ..., n, we denote by Gn(t1, t2) =
1
n

∑n
i=1 t

Xi

1 tYi

2 an empirical counterpart of the bivariate p.g.f.. According to Muñoz
and Gamero [20] a reasonable test for testing the compatibility of the assumed density
should reject the null hypothesis for large values of given statistic

T
(.)
P,n,w(λ̂1, λ̂2, λ̂3) =

∫ 1

0

∫ 1

0
g2n(t1, t2; λ̂1, λ̂2λ̂3)w(t1, t2)dt1dt2, (20)

where λ̂1, λ̂2, λ̂3 are consistent estimators of λ’s and
gn(t1, t2; λ̂1, λ̂2, λ̂3) =

√
n{Gn(t1, t2) − G(t1, t2; λ̂1, λ̂2, λ̂3)} and also w(t1, t2) ≥ 0 is a

measurable function satisfying
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∫ 1

0

∫ 1

0
w(t1, t2)dt1dt2 < ∞. (21)

The above condition implies that the test statistic T
(.)
n,w(λ̂1, λ̂2, λ̂3) is finite for the

fixed sample size n. Similarly for the sub-model I & II with appropriate p.g.f. one can

derive test statistic T
(SI)
P,n,w and T

(SII)
P,n,w .

Due to the difficulty in obtaining an explicit expression for the critical region, it
has been argued in Muñoz and Gamero [20] and in Muñoz [19], the rejection regions
can be simulated using bootstrapping methods. The general procedure to identify an
appropriate weight function is difficult to argue. One can consider the weight func-
tions, which include a more prominent family of functions. A few weight functions are
considered in Appendix C and also derived its test statistic. In Section 4, we analyzed
the effect of weight functions and their feasible parameter values on the critical region.

3.2.2. Kocherlakota and Kocherlakota (K&K) method

Let Z1, ...,Zn be a random sample from the bivariate distribution F (z; θ), where
θ = (θ1, ..., θd)

T is the d-dimensional parameter vector. Let G(t1, t2; θ) be the p.g.f.
of Z = (X,Y )T , t1, t2 ∈ R2 and parameter vector θ is estimated by the maxi-

mum likelihood estimation (m.l.e.) method, and the estimator we denote by θ̂. Let
Gn(t1, t2) = 1

n

∑n
i=1 t

Xi

1 tYi

2 , t ∈ R be the empirical probability generating function
(e.p.g.f.), then the test statistic is given by

TN (t1, t2) =
Gn(t1, t2)−G(t1, t2; θ̂)

σ
, |t1| < 1; |t2| < 1, (22)

is asymptotically follows the standard normal distribution, where

σ2 = 1
n [G(t21, t

2
2; θ) − G2(t1, t2; θ))] −

∑d
i=1

∑d
j=1 σi,j

∂G(t1,t2;θ)
∂θi

∂G(t1,t2;θ)
∂θj

, ((σi,j)) is the

inverse of the Fisher information matrix and σ can be estimated by plugging in the
m.l.e. of θ. We refer to Kocherlakota and Kocherlakota (K&K) [12] for the asymptotic
distribution of the test statistic. Note that the Fisher information matrix computation
for the full model is theoretically cumbersome, yet one can use numerical methods to
evaluate the matrix. However, we are considering the two sub-models of the bivariate
pseudo-Poisson and deriving their test statistics.

Now, for the sub-model I, the Fisher information matrix is

I(SI)(λ1, λ3) = n

E(X
λ2
1

)
0

0 E
(

Y
λ2
3

) =

[
n
λ1

0

0 n(1+λ1)
λ3

]
.

Similarly, for the sub-model II, the Fisher information matrix is

I(SII)(λ1, λ3) = n

E(X
λ2
1

)
0

0 E
(

Y
λ2
3

) =

[ n
λ1

0

0 nλ1

λ3

]
.
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The GoF test statistic is

T
(SI)
PN (t1, t2) =

Gn(t1, t2)−GI(t1, t2; λ̂1, λ̂3)

σ(SI)
, |t1| < 1, |t2| < 1, (23)

where Gn(.) is empirical p.g.f. and GI(t1, t2; λ̂1, λ̂3) is estimated p.g.f. of the sub-model
I, and

σ2(SI) =
1

n
[GI(t

2
1, t

2
2;λ1, λ3)−G2

I(t1, t2;λ1, λ3)]−
λ1

n

∂2GI(t1, t2;λ1, λ3)

∂λ2
1

− λ3

n(λ1 + 1)

∂2GI(t1, t2;λ1, λ3)

∂λ2
3

. (24)

Similarly, for the sub-model II, the GoF test statistic will be

T
(SII)
PN =

Gn(t1, t2)−GII(t1, t2; λ̂1, λ̂3)

σ(SII)
, |t1| < 1, |t2| < 1, (25)

where Gn(.) is empirical p.g.f. and GI(t1, t2; λ̂1, λ̂3) is estimated p.g.f. of the sub-model
II, and

σ2(SII)(t1, t2) =
1

n
[G(t21, t

2
2;λ1, λ3)−G2

(II)(t1, t2;λ1, λ3)]−
λ1

n

∂2G(II)(t1, t2;λ1, λ3)

∂λ2
1

− λ3

nλ1

∂2GII(t1, t2;λ1, λ3)

∂λ2
3

. (26)

The bootstrapped finite sample and asymptotic distributions of the GoF test statistic

of T
(.)
PN are studied in Section 4.

In the following, we propose a test procedure which will be Supremum on the
absolute value of the K&K test statistic with (t1, t2) over (−1, 1)× (−1, 1). The reason
behind proposing such a test is exemplified in Section 4. The mentioned GoF testing
procedure for the K&K method is originally discussed in Feiyan Chen [6] for the
univariate and bivariate geometric models. Besides, Feiyan Chen [6] also discusses the
K&K method for the multiple t-values for the GoF test for geometric models, c.f.
Page 12 of Chen[6] . However, in the present note, we are interested in proposing tests
that are free from the choices of t-values; hence, the advantages or disadvantages of
considering multiple t-values are not discussed or illustrated in this note.

The GoF test statistic is

T
(.)
SPN = sup

(t1,t2)∈{(−1,1)×(−1,1)}

∣∣∣∣∣Gn(t1, t2)−G.(t1, t2; λ̂1, λ̂3)

σ(.)

∣∣∣∣∣, (27)

where Gn(.), G. and σ(.) are defined in equation (22) to (25). Also note that deriving

the asymptotic distribution of the statistic T
(.)
SPN is theoretically ambiguous. Hence,
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in Section 4 the finite sample distribution of the test statistic T
(.)
SPN is analyzed.

Remark 4. For the Muñoz and Gamero (M&G) and Kocherlakota and Kocher-
lakota(K&K) the estimated p.g.f.’s can be obtained by plugging in the m.l.e. estimates
of λi, i = 1, 2, 3.

Remark 5. In Meintanis [15] Theorem 2.3 characterizes the general p.g.f. class of
distributions called the CP-class, where Thomas distribution is a member of the CP-
class. Which suggests a GoF test construction for the bivariate count models through
the one-dimensional p.g.f. of particular form belongs to the CP-class, see Meintanis
[15] Page 23 − 25. However, we have identified a missing link in the theorem, and
it needs to be clearly justified that knowing the form of the one-dimensional p.g.f.
assures in identifying the bivariate p.g.f.. If we assume the theorem, a family of tests
can be generated for the bivariate Poisson-Poisson distribution by testing only the one-
dimensional Thomas distribution. Since we do not completely agree with the theorem,
we are not recommending any test based on the one-dimensional result to conclude on
the higher dimensional tests.

3.3. GoF test free from alternative

In the class of distribution-free tests, the χ2 test is commonly used even when there
is no specific alternative hypothesis. However, this also raises difficulties in assessing
the power of the test.

3.3.1. χ2 GoF

In the following, we are using the classical χ2 GoF test, and cell probabilities are
computed up to k. The cell probability matrix is given by

X — Y 0 1 2 3 ... k+

0 p00 p01 p02 p03 ... P (X = 0)−
∑k−1

j=0 p0j

1 p10 p11 p12 p13 ... P (X = 1)−
∑k−1

j=0 p1j

2 p20 p21 p22 p23 ... P (X = 2)−
∑k−1

j=0 p2j

3 p30 p31 p32 p33 ... P (X = 3)−
∑k−1

j=0 p3j
... ... ... ... ... ... ...

k+ P (Y = 0)−
∑k−1

i=0 pi0 P (Y = 1)−
∑k−1

i=0 pi1 P (Y = 2)−
∑k−1

i=0 pi2 P (Y = 3)−
∑k−1

i=0 pi3 ... 1−
∑∞

i=k

∑∞
j=k pij

where pij = P (X = i, Y = j). The test statistic is

Tχ2 =

k∑
i=0

k∑
j=0

(
Oi,j − Ei,j

)2
Ei,j

, (28)

where k is the truncation point, Oi,j is frequency of (i, j) observation in the data
of size n and Ei,j = nP (X = i, Y = j). Hence, with Pearson theorem Tχ2 follows a χ2

distribution with [(k + 1)× (k + 1)− 1− 3] degrees of freedom.
Similarly, above two tests for the sub-models I & II can be derived with appropriate

cell probabilities pij = P (X = i, Y = j). In Section 4, we analyse finite sample and
large sample behavior of the above two test statistics.
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4. Examples

4.1. Simulation

In the following we give a general procedure to analyse the finite sample distribution
of the GoF test statistics with bootstrapping technique.

Step 1 Simulate n observations from the bivariate pseudo-Poisson with fixed parameter
values. Otherwise, estimate parameters by moment or m.l.e. method, say λ̂i.
Then compute GoF test statistics, say Tobs.

Step 2 Fix the number of bootstrapping samples, say B (ideal size is 5000,10000) and
sample m(< n) observation from the above sample, repeat Step 1 and compute
T b
m,obs for b ∈ {1, 2, ..., B}.

Step 3 From the frequency distribution of T b
m,obs obtain the quantile values and the

empirical p-value is 1
B{Total no. of T b

m,obs greater than Tobs}.

4.1.1. Test based on moments

In the current section we will be analysing the new non-consistent test defined in

Section 3.1. The finite sample distribution of the FI
(.)
n , see Table 4 and Figure 1

for the distribution and its quantile values for the full and its sub-models. From the
simulation study it clearly shown that the distribution of test statistic shown to be
standard normal behaviour for increasing sample size. In addition, we make a note that
for small and moderately large sample sizes the test shown to be stable and consistent.
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Figure 1. Distribution of the FI
(.)
n

4.1.2. Muñoz and Gamero (M&G) method

Now, we consider GoF using p.g.f. (c.f. Muñoz and Gamero [20]) T
(.)
P,n,w with depends

on the underlying weight functions. We refer to Table 1, 2, 3 and Figure 2, 3, 4, 5, 6
for small and large sample distribution of the test statistic and its quantile values for
the full and its sub-models.

To better understand the behaviour of the test statistic, we examined the impact of
different weights at a1 = −0.9,−0.5,−0.01, 0.5, 3 and a2 = −0.9,−0.5,−0.01, 0.5, 5 on
the test statistic. According to the simulation study we make a remark that irrespective
of the weight chosen the test are consistent and stable for moderately large sample
sizes. Also, note that for the increasing sample size the distribution of the test statistic
are less variant and are shown to be consistent.

120



Asian Journal of Statistical Sciences Banoth Veeranna, et al.a

T
a
b
le

1
.

E
x
a
m
p
le

1
S
a
m
p
le

si
ze

(0
.5
%
,2
.5
%
,5
%
;9
5
%
,9
7.
5%

,9
9.
5%

)
n
=

20
n
=

30
n
=

5
0

n
=

1
0
0

T
P
,n
,w

F
u
ll
M
o
d
el

(7
.0
8
5
,8
.6
64
,9
.6
32
;3
0.
38
2
,3
3.
1
38
,3
8.
77
3)

(5
.1
17
,5
.7
93
,6
.1
90
;1
5.
59
9
,1
6.
82
0,
20
.0
41
)

(2
.6
66
,3
.0
02
,3
.2
30
;6
.9
08
,7
.4
9
0,
8.
6
0
0
)

(0
.8
8
5
,0
.9
60
,1
.0
0
5
;1
.6
3
5
,1
.7
2
0
,1
.9
1
1
)

S
u
b
M
o
d
el

I
(1
0
.8
08
,1
2.
77
2,
1
3.
98
0;
40
.6
14
,4
2.
94
9
,4
9,
59
8)

(6
.5
60
,7
.7
70
,8
.4
55
;2
1.
57
9
,2
3.
46
3,
28
.3
88
)

(3
.5
35
,4
.0
0
8
,4
.0
09
,4
.3
46
;8
.9
1
4
,9
.5
0
7
,1
0.
7
22
)

(0
.9
5
8
,1
.0
7,
1.
1
26
;2
.0
9
3,
2.
2
1
7,
2.
5
13
)

S
u
b
M
o
d
el

II
(2
1
.2
7
0
,2
9
.8
4
7
,3
5.
06
4;
1
47
.1
86
,1
64
.7
92
,1
9
7.
58
6)

(1
6.
46
3
3,
21
.9
68
,2
4.
6
82
;7
8.
69
1
,8
6.
5
21
,1
03
.2
63
)

(1
2.
90
6,
15
.5
4
3
,1
6.
8
12
;3
3.
6
7
2
,3
6.
3
0
3,
4
1.
3
0
3
)

(3
.1
9
1
,3
.5
82
,3
.9
5
1
;7
.9
8
1
,8
.4
1
8
,9
.3
0
4
)

T
a
b
le

2
.

E
x
a
m
p
le

2
S
am

p
le

si
ze

(0
.5
%
,2
.5
%
,5
%
;9
5%

,9
7.
5%

,9
9
.5
%
)

n
=

20
n
=

30
n
=

50
n
=

1
0
0

T
P
,n
,w

F
u
ll
M
o
d
el

(2
4.
00

3
,2
9.
69

5
,3
2.
91

6;
10
9.
46
1,
12

0.
82
5,
14

3.
66
6)

(1
8.
68
8,
21
.3
58

,2
3
.0
45

;5
6.
04

3
,6
0
.8
40

,7
2.
92

8)
(9
.8
14

,1
1.
38
0
,1
2.
4
24

;1
8.
2
30

,2
7.
6
70

,3
3.
9
67

)
(3
.3
4
0
,3
.7
5
8
,3
.9
64

;6
.9
5
8
,7
.3
6
2
,8
.1
1
5
)

S
u
b
M
o
d
el

I
(3
5.
17

8
,4
1.
76

4
,4
6.
66

3;
15
3.
63
5,
16

6.
72
4,
20

5.
88
1)

(2
1
.5
54

43
,2
6.
23
3,
28
.6
11

,8
1.
37

8,
90
.5
66

,1
11

.3
64

)
(1
2
.9
25

,1
4.
97
1,
16
.3
3
0;
36
.4
3
4,
39
.1
21

,4
4.
6
05

)
(3
.7
3
5,
4.
29

0,
4.
54

6
;9
.0
8
9
9.
6
4
8
,1
1
.1
2
6
)

S
u
b
M
o
d
el

II
(8
3
.9
50

,1
20

.6
62

,1
50
.7
05

;7
50
.7
12
0,
85
4
.6
63

,1
02
7
.7
23

)
(6
6
.6
89

,9
4.
63

7,
10

8.
67

8;
39
8.
68
9,
44
.0
15

,5
40

52
3)

(5
1
.4
14

,6
4
.3
02

,7
2.
08

7;
16

9.
2
10

,1
84
.9
53
,2
1
3.
6
75

)
(1
3.
11

9,
1
5.
15

7
,1
6.
85

6;
3
8.
8
5
8
,4
1
.3
3
4
,4
6.
6
7
5
)

T
a
b
le

3
.

T
(.
)

P
,n

,w

S
am

p
le

si
ze

(0
.5
%
,2
.5
%
,5
%
;9
5%

,9
7.
5%

,9
9.
5
%
)

n
=

20
n
=

30
n
=

5
0

n
=

10
0

T
P
,n
,w

(a
1
=

−
0.
9,
a
1
=

−
0.
9)

(3
0
.9
18
,4
3.
7
73
,5
4.
3
67
;4
55
.9
14
,5
2
7
.1
23
,1
02
3
.2
03
45
)

(2
5
.1
82
,3
3.
19
3,
38
.6
30
;2
04
.2
90
,4
14
.5
03
)

(1
3.
9
56
,1
7
.7
6
6
,2
0.
1
12
;8
5.
1
84
,1
03
.3
0
5
,1
40
.4
6
2)

(4
.5
4
3
,5
.3
8
9
,5
.8
8
5
;1
8.
36
4
,2
2.
2
1
0
,2
9.
8
5
5
)

(a
1
=

−
0
.0
1,
a
1
=

−
0.
01
)

(1
2
.6
63
,1
8.
04
7
,1
9.
80
8;
69
.0
1
3
,7
7.
23
5
,9
7.
09
9)

(9
.1
93
,1
1.
20
6
,1
2
.4
88
;3
6.
49
4
,3
9
.8
59
,4
7.
08
4)

(4
.9
81
,5
.8
39
,6
.3
7
3;
1
5.
3
45
,1
6
.5
6
1
,1
9.
42
0
)

(1
.7
7
4,
1.
9
5
1,
2.
0
6
0
;3
.7
5
5,
3.
9
94
,4
.4
6
1)

(a
1
=

0.
0
1,
a
1
=

0.
01
)

(1
0
.9
23
,1
3.
72
6
,1
5.
78
6;
54
.8
7
3
,6
1.
51
2
,7
5.
46
8)

(7
.8
64
,9
.4
73
,1
0.
46
5;
29
.3
02
,3
1.
87
7,
37
.6
84
)

(4
.2
16
,4
.8
99
,5
.3
1
5
,1
2
.2
8
9
,1
3.
2
15
,1
5.
3
9
5)

(1
.5
0
6,
1.
6
4
5,
1.
7
3
4
;3
.0
3
7,
3.
2
13
,3
.5
7
0)

(a
1
=

0.
5,
a
1
=

0.
5
)

(8
.4
0
0,
1
0.
41
0
,1
1.
92
5;
40
.7
08
,4
5.
52
7,
54
.8
79
)

(5
.9
35
,7
.0
91
,7
.7
52
;2
0.
26
1,
21
.9
26
,2
5
.8
59
)

(3
.1
22
,3
.5
9
8
,3
.8
8
4
;8
.4
70
,9
.1
18
,1
0.
5
2
2
)

(1
.1
2
0,
1.
2
1
3,
1.
2
7
1
;2
.1
0
0,
2.
2
10
,2
.4
4
5)

(a
1
=

3,
a
1
=

5
)

(3
.0
66
,3
.5
57
,3
.8
51
;1
0.
3
52
,1
1.
3
98
,1
3.
67
9)

(3
.0
32
,3
.3
53
,3
.5
66
;6
.4
51
,6
.7
45
,7
.3
30
)

(1
.4
80
,1
.6
18
,1
.6
7
7;
2.
6
9
5
,2
.8
3
2
,3
.0
89
)

(0
.2
3
5,
0.
2
5
9,
0.
3
6
5
;0
.5
3
3,
0.
5
51
,0
.5
8
4)

(a
1
=

−
0.
9,
a
1
=

5)
(1
6
.2
95
,2
6.
76
0,
36
.1
07
;2
35
.8
47
,2
62
.6
17
,3
26
.2
37
)

(1
4
.5
23
,2
2.
04
7,
27
.5
41
,1
24
.2
08
,1
37
.8
08
,1
65
.0
83
)

(0
.2
13
,1
2.
8
53
,1
5.
1
9
0;
52
.6
53
,5
7
.0
7
5
,6
7.
9
11
)

(8
.8
2
5
,0
.9
4
5
,1
.0
2
8
;8
.0
5
0
,9
.5
02
,1
2
.3
6
6)

T
a
b
le

4
.

D
is
tr
ib
u
ti
o
n
o
f
th

e
F
I
(.
)

n
S
am

p
le

si
ze

(0
.5
%
,2
.5
%
,5
%
;9
5%

,9
7.
5%

,9
9.
5
%
)

n
=

20
n
=

30
n
=

5
0

n
=

10
0

n
=

50
0

F
I
(.
)

n

F
u
ll
M
o
d
el

(−
7.
81
8
,−

5
.7
01

,−
4
.6
65
;5
.0
33

,6
.9
00

,1
1.
23
1)

(−
7
.7
60

,−
5.
76
2,
−
4.
69
8;
5.
08
4,
6.
70
3,
10
.5
98
)

(−
7.
16
6
,−

5
.5
30

,−
4
.7
48
;5
.0
34

,6
.5
4
4
,9
.6
66
)

(−
7
.1
67

,−
5.
53
0,
−
4.
7
48
;5
.0
34
,6
.5
4
4,
9.
66

6)
(−

6.
89

7
,−

5
.6
76

,−
4
.8
4
1;
5.
0
47

,6
.0
63

,8
.2
0
)

S
u
b
M
o
d
el

I
(−

9
.5
37

,−
7
.7
49

,−
6
.7
66
;9
.0
93

,1
1.
85
2
,1
7.
64
8)

(−
9.
94
7,
−
8.
14
0
,−

7
.1
31
;8
.8
25

,1
1.
50
0,
15
.8
42
)

(−
10
.4
77

,−
8
.5
60

,−
7
.5
05

;8
.7
2
5
,1
0.
88
7
,1
5.
9
36
)

(−
11
.0
18
,−

8.
6
10

,−
7
.5
07

;9
.2
0
3
,1
1.
22
3,
15
.6
89
)

(−
11
.7
59

,−
9.
03

4,
−
7.
8
02
;8
.3
65
,1
0.
2
93

,1
3.
74

1)
S
u
b
M
o
d
el

II
(−

1
5.
20
5,
−
12
.6
28

,−
11
.1
81
;1
3.
71
0
,1
8.
74
0
,2
9.
80
0)

(−
15
.9
17

,−
13
.2
77

,−
11
.6
95
;1
3.
92
4
,1
7
.2
55

,2
8.
74
8)

(−
17
.1
91

,−
14
.0
88
,−

12
.1
62
;1
3.
74

8,
17
.9
47

,2
7.
6
65
)

(−
18
.4
34
,−

15
.1
08

,−
13
.0
76
;1
2.
99

7
,1
5.
9
76
,2
1.
9
76
)

(−
20
.6
47

,−
16
.7
82

,−
14

.4
7
8
,1
1.
62

9
,1
4.
4
97

,2
1.
0
93
)

121



Asian Journal of Statistical Sciences Banoth Veeranna, et al.a

0.0

0.1

0.2

0.3

0 10 20 30
valuemle

d
e

n
s
it
y

category

n=100

n=20

n=30

n=50

Distribution of T Statistic for Full Model

(a)

0.0

0.1

0.2

0.3

0 10 20 30
valuemle

d
e

n
s
it
y

category

n=100

n=20

n=30

n=50

Distribution of T Statistic for Sub−Model I

(b)

0.0

0.1

0.2

0.3

0 20 40 60 80
valuemle

d
e

n
s
it
y

category

n=100

n=20

n=30

n=50

Distribution of T Statistic for Sub−Model II

(c)

Figure 2. Example 1
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Figure 3. Example 2
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Figure 4. T
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4.1.3. K&K Method

In the following, we discuss finite, large and asymptotic distribution of the test

statistics T
(.)
PN (t1, t2) and T

(.)
SPN (c.f. Section 3.2.2). Here, we limit our analysis to sub-

models of the bivariate pseudo-Poisson model, and statistical inference or parameter
estimation are well defined (see Section 7 in Arnold and Manjunath [2]). However,
in sub-models I and II, both the method of moments and the maximum likelihood
estimators coincides. Hence, due to invariance property of the maximum likelihood es-
timator the defined test statistic asymptotically follows standard normal with variance
is will be inverse of Fisher information matrix.

Now, we consider bootstrapping size of B = 5000 with varying sample size of
n = 20, 30, 50, 100, 500 at different ti = ±0.01,±0.5,±0.9, i = 1, 2.

Sub-Model I (i.e. λ2 = λ3) The corresponding quantile values and density plots
refer to Table 5 and Figure 7, respectively.

Sub-Model II (i.e. λ2 = 0) The corresponding quantile values and density plots
refer to Table 6 and Figure 8, respectively.

According to the simulation study it has been observed that whenever ti is closer to
zero the empirical critical points are closer to the standard normal quantile values. It
has been recommended that the t values are to be chosen either in the neighbourhood
of zero or well spanned in the interval (−1, 1) to have consistency in the tests.

Note that from the Table 5 & 6 and also from Figure 7 & 8 K&K method finite
sample distribution depends on the selected values for (t1, t2). In particular, at t1 =
−0.5(0.5) and t2 = −0.5(0.5) K&K statistic distributions are inconsistent. Hence, we

consider the test statistic T
(.)
SPN (defined in (27)) such that the test support completely

depends on complete span of ti-values, i = 1, 2,. For an illustration of the proposed test
we are analysing the finite sample distribution of the test statistic which is computed
with varying t1 and t2 from −0.99 to 0.99 at an increment of 0.01.

Finally, it has been argued in Feiyan Chen [6] that such tests are robust to the
choice of alternatives and that the performance of the test is better than the K&K
test because it also spanned the entire interval of (−1, 1)× (−1, 1).

We refer to Table 7 and Figure 9 for the quantile values and frequency distribution
of the test statistic, respectively. The test statistic’s behaviour is more stable and
consistent for small and moderately large samples.
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4.1.4. GoF test free from alternative

The distribution of Chi-square GoF test statistic sample distribution for the full
and its sub-models, see Figure 10. However, in the case of missing alternative distri-
bution information Chi-square GoF test recommended otherwise other tests which are
mentioned perform better than the Chi-square. Also, Chi-square test dependences on
the value of k chosen, for an illustration we have consider K = 4 and analysed its
finite and large sample distributions.
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Figure 10. Chi-square GoF test for k = 4.

4.1.5. Power analysis

In the present section, we will be considering classical bivariate Poisson and bivariate
Conway-Maxwell Poisson distributions as alternatives to analyse the power of each of
the tests discussed above.

Hence, we simulate n = 20, 30, 50, 100, 500 samples from Zi ∼ Poisson(θi),
i = 1, 2, 3 and taking U = Z1 + Z3 and V = Z2 + Z3 the resultant joint random
variable (U, V ) will be n observations from the classical bivariate Poisson distribu-
tion. Nevertheless, to simulate n = 20, 30, 50, 100, 500 samples from the bivariate
Conway-Maxwell Poisson, we begin with simulating an observation from the univariate
Conway-Maxwell Poisson with parameter θ and ν, say N . Further, simulate N obser-
vations from the bivariate binomial distribution with specified cell probabilities, say
(W1i,W2i), i = 1, 2, ..., N . Then, the random vector (

∑N
i=1W1i,

∑N
i=1W2i) will be an

observation from the bivariate Conway-Maxwell Poisson distribution. For the desired
sample size, repeat the above procedure for n times to have specified sample size from
the bivariate Conway-Maxwell Poisson distribution. We refer to Sellers et al. [23] for
further discussion and an algorithm to simulate from the bivariate Conway-Maxwell
Poisson using R software.

The empirical power computation is as follows

Step 1 Compute GoF test statistic value for the samples from alternative distribution,
say Tobs.

Step 2 For the given bootstrapping size (sayB = 5000), compute T b
A for b ∈ {1, 2, ..., B}.

Step 3 Hence, 1
B{Total no. of T b

A greater than Tobs} is an empirical power of the test.

131



Asian Journal of Statistical Sciences Banoth Veeranna, et al.a

We refer to Table 9 for the each of the tests empirical powers.

Table 9. Power (% of observations) under classical bivariate Poisson (BCBP((θ1 = 1, θ2 = 3, θ3 = 4))) and
bivariate Conway-Maxwell Poisson (BCMP(θ = 1,ν = 5, µ1 = 0.1,ratio = exp(1.5))) alternatives

Sample size
n = 20 n = 30 n = 50 n = 100 n = 500

T
(SII)
PN

t1 = −0.9, t2 = −0.9 (17.2, 8.8) (21.6, 4.2) (22.6, 2.6) (59.2, 0.03) (90.4, 0.01)
t1 = −0.5, t2 = −0.5 (0.92, 82.4) (0.89, 84.0) (0.91, 92.4) (0.93, 0.95.8) (0.99, 0.97)

t1 = −0.01, t2 = −0.01 (0.99, 0.91) (0.97, 0.93) (0.99, 0.99) (0.99, 0.97) (0.99, 0.99)
t1 = 0.01, t2 = 0.01 (0.99, 0.99) (0.99, 0.98) (0.98, 0.97) (0.99, 0.99) (0.99, 0.98)
t1 = 0.5, t2 = 0.5 (0.99, 0.99) (0.91, 0.99) (0.92, 0.99) (0.89, 0.99) (0.81, 0.99)
t1 = 0.9, t2 = 0.9 (0.98, 0.99) (0.92, 0.93) (0.94, 0.96) (0.99, 0.99) (0.99, 0.99)

T
(SII)
SPN

— (0.95, 0.92) (0.99, 0.91) (0.95, 0.98) (0.99, 0.99) (0.99, 0.97)

T
(.)
P,n,w

a1 = −0.9, a2 = −0.9 (35.2, 67.8) (56.9, 82.7) (59.9, 12.6) (35.0, 9.2) −−
a1 = −0.01, a2 = −0.01 (6.0, 85.4) (72.5, 27.4) (24.5, 15.2) (10.1, 50.3) −−
a1 = 0.01, a2 = 0.01 (79.5, 2.6) (20.3, 16.0) (36.3, 34.2) (6.1, 59.8) −−
a1 = 0.5, a2 = 0.5 (19.2, 37.3) (4.5, 27.0) (26.1, 85.4) (2.1, 55.5) −−
a1 = 3, a2 = 5 (35.0, 74.0) (72.7, 19.0) (5.5, 25.5) (1.2, 10.0) −−

a1 = −0.9, a2 = 5 (12.0, 91.0) (10.8, 72.0) (4.7, 92.8) (0.1, 43.6) −−

T
(SI)
P,n,w

a1 = −0.9, a2 = −0.9 (79.3, 96.5) (12.3, 95.0) (11.2, 21.8) (13.4, 34.6) −−
a1 = −0.01, a2 = −0.01 (73.5, 20.4) (16.9, 9.5) (0.9, 87.0) (0.1, 13.2) −−
a1 = 0.01, a2 = 0.01 (22.4, 3.8) (15.9, 96.4) (2.2, 93.8) (13.8, 17.4) −−
a1 = 0.5, a2 = 0.5 (43.2, 87.1) (27.5, 4.8) (21.3, 80.2) (1.1, 69.4) −−
a1 = 3, a2 = 5 (40.8, 43.2) (36.0, 94.7) (2.1, 75.8) (1.3, 10.2) −−

a1 = −0.9, a2 = 5 (54.4, 87.2) (62.7, 72.0) (4.7, 36.8) (0.1, 24.4) −−

T
(SII)
P,n,w

a1 = −0.9, a2 = −0.9 (7.1, 12.9) (41.9, 99.9) (7.7, 26.2) (60.71, 64.2) −−
a1 = −0.01, a2 = −0.01 (71.4, 74.7) (9.6, 56.6) (2.9, 31.6) (0.2, 36.5) −−
a1 = 0.01, a2 = 0.01 (8.1, 36.1) (2.5, 54.4) (7.5, 67.1) (0.1, 37.3) −−
a1 = 0.5, a2 = 0.5 (38.9, 18.9) (18.2, 99.6) (5.4, 78.7) (0.4, 96.2) −−
a1 = 3, a2 = 5 (2.6, 70.0) (2.5, 1.8) (0.1, 82.3) (0.0, 6.0) −−

a1 = −0.9, a2 = 5 (50.6, 70.6) (55.0, 36.4) (4.4, 84.4) (0.0, 13.2) −−

FI
(.)
n

— (58.4, 34.6) (46.1, 86.7) (56.0, 22.9) (11.8, 42.4) (63.5, 20.8)

FI
(SI)
n

— (76.9, 13.5) (6.3, 90.6) (83.0, 40.6) (41.7, 30.9) (88.1, 73.8)

FI
(SII)
n

— (69.9, 94.4) (86.4, 70.2) (95.0, 26.6) (91.0, 46.7) (100, 33.8)

All tests are effective or significant in identifying from the pseudo-Poisson and
Conway-Maxwell Poisson distributions, according to the power analysis. When com-
pared to the classical bivariate Poisson, tests are moderately consistent in detecting
the true population. We draw the conclusion that one needs to think about altering the
parameter values and conducting additional research on the same in order to better
grasp the power for the classical bivariate Poisson alternative.

4.2. Real-life data

In the following section we consider two data sets which are mentioned in Karlis
and Tsiamyrtzis [11], Islam and Chowdhury [9], Leiter and Hamdani [14] and also
in Arnold and Manjunath [2]. For empirical p-value computation we have simulated
5000 observations from the pseudo-Poisson models with respective maximum likelihood
values and compare it with the critical value of each of the tests.
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4.3. A particular data set I

We consider a data sets which is mentioned in Islam and Chowdhury [9] and also in
Arnold and Manjunath [2] , the source of the data is from the tenth wave of the Health
and Retirement Study (HRS). The data represents the number of conditions ever had
(X) as mentioned by the doctors and utilization of healthcare services (say, hospital,
nursing home, doctor and home care) (Y ). The Pearson correlation coefficient between
X and Y is 0.063. The test for independence, classical inference (m.l.e and moment
estimates) and AIC values for full and its sub-models (c.f. Arnold and Manjunath [2]
page 16 and 18) in Table 10.

In the following we will consider the full and its sub-model II. The criteria of selecting
below two models are discussed in Arnold and Manjunath [2] on page 18 and Table
10. We refer to Table 10 for the critical values and its empirical p-values for the Full
and sub-model II.

Table 10. Health and retirement study data (Full Model) and m.l.e. estimates Full model (λ̂1 = 2.643,λ̂2 =

0.688,λ̂3 = 0.031) for Sub-Model II (λ̂3 = 0.031)

n = 5567
Test statistic value p-value

T
(SII)
PN

t1 = −0.9, t2 = −0.9 151.734 0.025
t1 = −0.5, t2 = −0.5 −2870.383 0.891
t1 = −0.01, t2 = −0.01 755.821 0.901
t1 = 0.01, t2 = 0.01 803.119 0.921
t1 = 0.5, t2 = 0.5 1713.7 0.141
t1 = 0.9, t2 = 0.9 3710.615 0.164

T
(SII)
SPN

— 12.740 0.097

T
(.)
PN

a1 = −0.9, a2 = −0.9 578.674 0.01
a1 = −0.5, a2 = −0.55 117.940 0.99
a1 = −0.01, a2 = −0.01 64.179 0.8

a1 = 1, a2 = 1 67.564 0.09
a1 = 3, a2 = 5 21.739 0.12

a1 = −0.9, a2 = 5 23.830 0.02

T
(SII)
PN

a1 = −0.9, a2 = −0.9 659.816 0.99
a1 = 1, a2 = 1 71.881 0.07

a1 = −0.9, a2 = 5 24.465 0.02

FI
(.)
n

— −13.532 0.987

FI
(SII)
n

— −25.729 0.991

Chi-square (.) — 417.653 −−

The tests T
(SII)
PN on neighbourhood of 0, T

(SII)
SPN , T

(.)
PN (large than −0.9), FI

(.)
n and

FI
(SII)
n are suggests that the Health and Retirement data fits bivariate pseudo-Poisson

Full and its sub-model II, which agree with the AIC values listed on pages 16 & 18 of
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Arnold and Manjunath’s [2].

4.4. A particular data set II

Now, we consider a data set which is in Leiter and Hamdani [14], the source of the
data is a 50-mile stretch of Interstate 95 in Prince William, Stafford and Spotsylvania
counties in Eastern Virginia. The data represents the number of accidents catego-
rized as fatal accidents, injury accidents or property damage accidents, along with the
corresponding number of fatalities and injuries for the period 1 January 1969 to 31
October 1970. For classical inference (m.l.e. and moment estimates) and AIC values
for full and its sub-models c.f. Arnold and Manjunath [2] page 17 and 19 (Table 11).
The criteria of selecting below two models are discussed in Arnold and Manjunath
[2] on page 19 and Table 11. It has been emphasized in Leiter and Hamdani [14] and
Arnold and Manjunath [2] that mirrored sub-model II fit the data better than any
other sub-models.

In the following we will consider the two models. We refer to Table 11 for the critical
values and its empirical p-values for the Full and Mirrored sub-model II.

Table 11. Accidents and fatalities (Full Model) and m.l.e. estimates Full model (λ̂1 = 0.058,λ̂2 = 0.812,λ̂3 =

0.867) and for mirrored Sub-Model II (λ̂1 = 0.862,λ̂3 = 0.067)

n = 639
Test statistic value p-value

Mirrored T
(SII)
PN

t1 = −0.9, t2 = −0.9 165.966 0.054
t1 = −0.5, t2 = −0.5 −359.286 0.932

t1 = −0.01, t2 = −0.01 −135.242 0.914
t1 = 0.01, t2 = 0.01 −133.630 0.899
t1 = 0.5, t2 = 0.5 −126.924 0.763
t1 = 0.9, t2 = 0.9 −220.890 0.558

Mirrored T
(SII)
SPN

— 4.237 0.544

T
(.)
PN

a1 = −0.9, a2 = −0.9 1057.191 0.99
a1 = −0.5, a2 = −0.55 100.903 0.98
a1 = −0.01, a2 = −0.01 24.906 0.87

a1 = 1, a2 = 1 3.786 0.91
a1 = 3, a2 = 5 1.178 0.01

a1 = −0.9, a2 = 5 152.5798 0.007

Mirrored T
(SII)
PN

a1 = −0.9, a2 = −0.9 78.337 0.40
a1 = 1, a2 = 1 4.049 0.91

a1 = −0.9, a2 = 5 1.438 0.20

FI
(.)
n

— 2.289 0.986

Mirrored FI
(SII)
n

— 3.443 0.3

Chi-square (.) — 586 −−

The tests T
(SII)
PN on neighbourhood of 0, T

(SII)
SPN , T

(.)
PN (large than −0.9), FI

()
n and
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FI
(SII)
n suggests that the Accidents and Fatalities data fits well the bivariate pseudo-

Poisson Full and its mirrored sub-model II, which is inline with the AIC values listed
on pages 16 & 18 of Arnold and Manjunath’s [2].

5. Conclusion

The GoF tests for the bivariate pseudo-Poisson and its sub-models were the main
emphasis of the current note. Based on p.g.f., moments, and Chi-square tests, we
proposed a few GoF tests. The test based on the bivariate Fisher index of dispersion-
based GoF test is a new contribution to the bivariate count variables. The Supremum of
the absolute difference between the calculated p.g.f. and its empirical equivalent is the
robust GoF test, i.e., robust to the choice of the alternative distributions. Additionally,
we took into account a few existing tests that depend on the estimated p.g.f. and its
empirical results, such as K&K, Munoz, and Gamero approaches. Finally, the Chi-
square GoF test results for the pseudo-Poisson data were also examined.

A finite sample, a fairly large sample, and asymptotic distributions of test statistics
are examined for each of the tests discussed. In addition, we looked at the power and
efficacy of each statistical test using the bivariate Conway-Maxwell Poisson and the bi-
variate Classical Poisson (BCP) as alternative distributions. It has been demonstrated
that a test based on the Supremum and Index of dispersion is reliable, consistent, and
satisfying. Particularly, the Supremum-based test proved to be more robust to the
choice of alternative distributions. Additionally, we suggest utilizing the Munoz and
Gamero (M&G) test for moderately small samples and the Supremum (robust) and
dispersion tests for moderately large samples. Due to the asymptotic distribution of
the test statistic, we also recommend K&K and dispersion tests for sufficiently large
data sets. Also, due to its robust property, we suggest considering the Supremum and
Chi-square GoF tests if there are no reasonable alternatives to the hypothesis.

The bivariate pseudo-Poisson distribution has been highly advised as the primary
choice when modeling bivariate count data whenever the marginals exhibit equal and
over-dispersed, see Arnold and Manjunath [2]. The GoF tests that have been suggested
will unquestionably add yet another tool for evaluating the compatibility of the bivari-
ate count data. Briefly said, writers are working on an R package that covers fitting
(classical and Bayesian analysis) and testing for the bivariate pseudo-Poisson model.
The developed package will merit a spot in the toolkit of contemporary modellers
because of its simple structure and fast computation.
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6. Appendices

Appendix A. Marginal probability of Y

For the marginal distribution of Y , the probability that Y = 0 can be computed as

P (Y = 0) = GY (0) = e−λ2eλ1(e−λ3−1). (29)

For the probability that Y = 1 we have

d

dt
GY (t2) = GY (t2)

[
λ1λ3e

λ3(t2−1) + λ2

]

P (Y = 1) =
d
dtGY (t2)|t2=0

1!
= GY (0)

[
λ1λ3e

−λ3 + λ2

]
. (30)

Similarly, P (Y = 2) is given as

d2

dt2
GY (t2) = GY (t2)

[(
λ1λ2e

λ2(t2−1) + λ2

)2
+ λ1λ

2
3e

λ3(t2−1)

]

P (Y = 2) =
d
dtGY (t2)|t2=0

2!
=

GY (0)

2!

[(
λ1λ2e

−λ2 + λ2

)2
+ λ1λ

2
3e

−λ3

]
, (31)

and finally P (Y = 3) is models

d3

dt3
GY (t2) = GY (t2)

[
λ1λ3(

(
λ1λ3e

λ3(t2−1) + λ2

)2
+ λ3

(2
(
λ1λ3e

λ3(t2−1) + λ2

)
+ λ3(1 + λ1e

λ3(t2−1))))eλ3(t2−1)+

λ2(
(
λ1λ3e

λ3(t2−1) + λ2

)2
+ λ1λ

2
3e

λ3(t2−1))

]
. (32)

P (Y = 3) =
1

3!

d3

dt3
GX2

(0)|t2=0 =
GY (0)

6

[
λ1λ3(

(
λ1λ3e

−λ3 + λ2

)2
+ λ3

(2
(
λ1λ3e

−λ3 + λ2

)
+ λ3(1 + λ1e

−λ3)))e−λ3+

λ2(
(
λ1λ3e

−λ3 + λ2

)2
+ λ1λ

2
3e

−λ3)

]
. (33)

On similar line one can extend the above procedure to get albeit complicated values
for the probability that Y assumes any positive value.
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Appendix B. Other conditional distribution of the bivariate pseudo-Poisson

In the following we are deriving other conditional distribution, i.e., conditional distri-
bution of X given Y = y by induction for the sub-model II. Consider the joint mass
function of pseudo-Poisson sub-model II

fX,Y (x, y) =

{
e−λ1λx

1

x!
e−λ3x(λ3x)y

y! x = 1, 2, ...; y = 0, 1, 2, ...

e−λ1 (x, y) = (0, 0).

Now, consider the case in which y = 0 then for each x = 0, 1, 2, ... the conditional mass
function will be

fx|Y (x|0) =
P (X = x, Y = 0)

P (Y = 0)

=
e−λ1e−λ3 (λ1e

−λ3)x

x!
. (34)

Indeed the above conditional mass function is a Poisson distribution with mean equal
to λ1e

−λ3 .
Next, consider the case with y = 1. For each x = 1, 2, ... we have

fx|Y (x|1) =
P (X = x, Y = 1)

P (Y = 1)

=
e−λ1e−λ3 (λ1e

−λ3)x−1

(x− 1)!
, (35)

which is recognizable as the distribution of 1 plus a Poisson(λ1e
−λ3).

For y ≥ 1 and for each x = 1, 2, ... we have a

fX|Y (x|y) =
P (X = x, Y = y)

P (Y = y)

=

e−λ1e−λ3 (λ1e−λ3 )x−1xy

(x−1)!

µy
, (36)

where µy is the yth moment of a Poisson(λ1e
−λ3) variable. Note that the expression

µy can also be expressed in terms of factorial moments and the yth factorial moment
is (λ1e

−λ3)y. Thus we have

µy =

y∑
j=0

S(y, j)(λ1e
−λ3)y, (37)

where S(y, j) is a Stirling number of the second kind. Also note that if y ≥ 1 then
S(y, 0) = 0.
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Appendix C. Examples

Consider the following examples:

Example 6.1. define w1(t1, t2) = c1 + c2t1t2 + c3t
2
1t

2
2, (t1, t2)

T ∈ [0, 1]2, c1, c2, c3 ∈ R
and Tn,w1

(λ̂1, λ̂2, λ̂3) is

c1

{
1

n

n∑
i=1

n∑
j=1

(
1

(Xi +Xj + 1)(Yi + Yj + 1)

)

+

∞∑
k=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

(
P(k; λ̂1)P(l; λ̂2 + kλ̂3)P(m; λ̂1)P(n; λ̂2 +mλ̂3)

∫ 1

0

∫ 1

0
tk+m
1 tl+n

2 dt1dt2

)

−2

n∑
i=1

∞∑
x=0

∞∑
y=0

(
P(x; λ̂1)P(y; λ̂2 + xλ̂3)

∫ 1

0

∫ 1

0
tx+Xi

1 ty+Yi

2 dt1dt2

)}
+

c2

{
1

n

n∑
i=1

n∑
j=1

(
1

(Xi +Xj + 2)(Yi + Yj + 2)

)

+

∞∑
k=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

(
P(k; λ̂1)P(l; λ̂2 + kλ̂3)P(m; λ̂1)P(n; λ̂2 +mλ̂3)

∫ 1

0

∫ 1

0
tk+m+1
1 tl+n+1

2 dt1dt2

)
−

−2

n∑
i=1

∞∑
x=0

∞∑
y=0

(
P(x; λ̂1)P(y; λ̂2 + xλ̂3)

∫ 1

0

∫ 1

0
tx+Xi+1
1 ty+Yi+1

2 dt1dt2

)}
+

c3

{
1

n

n∑
i=1

n∑
j=1

(
1

(Xi +Xj + 3)(Yi + Yj + 3)

)

+

∞∑
k=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

(
P(k; λ̂1)P(l; λ̂2 + kλ̂3)P(m; λ̂1)P(n; λ̂2 +mλ̂3)

∫ 1

0

∫ 1

0
tk+m+2
1 tl+n+2

2 dt1dt2

)

−2

n∑
i=1

∞∑
x=0

∞∑
y=0

(
P(x; λ̂1)P(y; λ̂2 + xλ̂3)

∫ 1

0

∫ 1

0
tx+Xi+2
1 ty+Yi+2

2 dt1dt2

)}
,(38)

where P(i; .λ̂) is a Poisson probability at i for the estimated parameter λ̂.
Further simplification gives us
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Tn,w1
(λ̂1, λ̂2, λ̂3) =

c1
n

n∑
i=1

n∑
j=1

(
1

(Xi +Xj + 1)(Yi + Yj + 1)

)
+

c2
n

n∑
i=1

n∑
j=1

(
1

(Xi +Xj + 2)(Yi + Yj + 2)

)
+

c3
n

n∑
i=1

n∑
j=1

(
1

(Xi +Xj + 3)(Yi + Yj + 3)

)
+

c1

∞∑
k=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

(
P(k; λ̂1)P(l; λ̂2 + kλ̂3)P(m; λ̂1)P(n; λ̂2 +mλ̂3)

(k +m+ 1)(l + n+ 1)

)
+

c2

∞∑
k=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

(
P(k; λ̂1)P(l; λ̂2 + kλ̂3)P(m; λ̂1)P(n; λ̂2 +mλ̂3)

(k +m+ 2)(l + n+ 2)

)
+

c3

∞∑
k=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

(
P(k; λ̂1)P(l; λ̂2 + kλ̂3)P(m; λ̂1)P(n; λ̂2 +mλ̂3)

(k +m+ 3)(l + n+ 3)

)
+

−2c1

n∑
i=1

∞∑
x=0

∞∑
y=0

(
P(x; λ̂1)P(y; λ̂2 + xλ̂3)

(x+Xi + 1)(y + Yi + 1)

)

−2c2

n∑
i=1

∞∑
x=0

∞∑
y=0

(
P(x; λ̂1)P(y; λ̂2 + xλ̂3)

(x+Xi + 2)(y + Yi + 2)

)

−2c3

n∑
i=1

∞∑
x=0

∞∑
y=0

(
P(x; λ̂1)P(y; λ̂2 + xλ̂3)

(x+Xi + 3)(y + Yi + 3)

)
. (39)

We refer to Table 1 and Figure 2 for the quantile values and frequency distribution
for a1 = 1 and a2 = 1, respectively.

Example 6.2. For a general form of w(., .), consider w2(t1, t2) = ta1

1 ta2

2 , (t1, t2)
T ∈

[0, 1]2, a1, a2 ∈ (−1,∞), which allows us to include a negative powers as well, then the
Tn,w2

is

1

n

n∑
i=1

n∑
j=1

(
1

(Xi +Xj + a1 + 1)(Yi + Yj + a2 + 1)

)

+

∞∑
k=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

(
P(k; λ̂1)P(l; λ̂2 + kλ̂3)P(m; λ̂1)P(n; λ̂2 +mλ̂3)

∫ 1

0

∫ 1

0
tk+m+a1

1 tl+n+a2

2 dt1dt2

)

−2

n∑
i=1

∞∑
x=0

∞∑
y=0

(
P(x; λ̂1)P(y; λ̂2 + xλ̂3)

∫ 1

0

∫ 1

0
tx+Xi+a1

1 ty+Yi+a2

2 dt1dt2

)
.
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Now, further simplification will give us closed form expression for the statistic

Tn,w2
(λ̂1, λ̂2λ̂3) =

1

n

n∑
i=1

n∑
j=1

(
1

(Xi +Xj + a1 + 1)(Yi + Yj + a2 + 1)

)

+

∞∑
k=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

(
P(k; λ̂1)P(l; λ̂2 + kλ̂3)P(m; λ̂1)P(nP(x; λ̂1)

(k +m+ a1 + 1)(l + n+ a2 + 1)

)

−2

n∑
i=1

∞∑
x=0

∞∑
y=0

(
P(x; λ̂1)P(y; λ̂2 + xλ̂3)

(x+Xi + a1 + 1)(y + Yi + a2 + 1)

)
. (40)

We refer to Table 2 and Figure 3 for the quantile values and frequency distribution
for a1 = 1 and a2 = 1, respectively. Also, with varying a1 and a2 values finite sample
distribution of the statistics, see Table 3 and Figures 4, 5 and 6.
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